If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5w^2+6w=186624
We move all terms to the left:
0.5w^2+6w-(186624)=0
a = 0.5; b = 6; c = -186624;
Δ = b2-4ac
Δ = 62-4·0.5·(-186624)
Δ = 373284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{373284}=\sqrt{36*10369}=\sqrt{36}*\sqrt{10369}=6\sqrt{10369}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{10369}}{2*0.5}=\frac{-6-6\sqrt{10369}}{1} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{10369}}{2*0.5}=\frac{-6+6\sqrt{10369}}{1} $
| 5x+5=3x+65= | | -72=-9(w-87) | | -14+x=-12 | | 3x-47=x+7 | | 41-5c=-44 | | 5n^2−7=488 | | d/9+-50=-52 | | 84=7(t+7) | | 5x+46=92 | | 8=x-18 | | 10(f-96)=-20 | | 5x-4(3x-4)=93 | | 2n^2=−144 | | 5x-5(3x4)=93 | | 2x=14-8 | | -6=4-2b | | 5x-4(-3x+20=-45 | | -15y-42=-10 | | -5x-2(-3+20)=-45 | | 2j-3=15 | | n-24.4=-44.8 | | -4+2f=6 | | 4x+2(4x+4)=104 | | 7y-5=15y+43 | | -4x+7(-7x+21)=-118 | | 150u-69=45 | | x−8=5 | | 18n=-108 | | -7x+2(3x-15)=-37 | | 16+b=-4 | | 6u-69=-45 | | 11-3x+75=-1 |